

Announcement Four New Gen-4 ERC

(Lead institutions ***** and core partners)

NSF ERC for Carbon Utilization Redesign through Biomanufacturing-Empowered Decarbonization (CURB)

Shuhua Yuan (Principal Investigator)

Lead: Washington University in St. Louis in partnership with the University of Delaware, Prairie View A&M University and Texas A&M University.

- CURB will transform U.S. manufacturing by *curbing CO2 emissions* and decreasing the human ecological footprint.
- CURB will create cost-effective and emissions-free biomanufacturing technologies, facilitating the nextgeneration bioeconomy and empowering industrial decarbonization.
- Global industrial and energy emissions topped 36.8 billion tons in 2022, potentially causing \$6.8 trillion in social costs. CURB will advance, deploy, and scale innovative hybrid electro-biomanufacturing engineered systems to empower a new circular carbon economy wherein CO2 will serve as valuable feedstock for manufacturing a broad range of products much more efficiently than current state-of-the-art and natural systems.
- Ultimately, CURB will transform U.S. manufacturing to zero- and negative emissions, valorize waste CO2 from broad industries, mitigate climate change, reduce hazardous compounds in emissions, and produce plastics that are biodegradable rather than polluting.
- CURB will produce evidence-based practices for the inclusion of underrepresented groups and workforce pathways to success to empower rapid technology deployment and promote environmental justice. Through partners ranging from start-ups to major corporations, CURB?s technology commercialization will empower a billion-ton level carbon emission reduction and tens of billions of dollars in economic growth.

NSF ERC for Environmentally Applied Refrigerant Technology Hub (EARTH)

Mark Shiflett (Principal Investigator)

Lead: University of Kansas Partners: Lehigh University, University of Hawaii, University of Maryland, University of Notre Dame and University of South Dakota.

- EARTH will create a transformative, *sustainable refrigerant lifecycle to reduce global warming* from refrigerants while increasing the energy efficiency of heating, ventilation and cooling.
- EARTH's vision is to create a transformative "sustainable refrigerant lifecycle" to address the HVACR ecosystem's key technical and societal challenges: (1) lowering HFC emissions, (2) creating safe, property-balanced replacement refrigerants, and (3) increasing HVACR energy efficiency.
- Heating, ventilation, air conditioning, and refrigeration (HVACR) are high-global-warming-potential (GWP) hydrofluorocarbons (HFCs) with up to 4000 times the impact of CO2. High HVACR-associated energy consumption and HFC leaks account for 7.8% of total greenhouse-gas emissions. The American Innovation and Manufacturing (AIM) Act mandates an 85% phasedown of HFCs over the next two decades, but these challenges threaten that goal.
- EARTH ERC brings together talent in engineering (chemical, environmental, mechanical, and materials), architecture, business, chemistry, economics, geography, history, law, psychology, and entrepreneurship in one Innovation Ecosystem to co-create convergent technical and societal solutions with industry partners, technical and community colleges, professional organizations, regulators, and end users.

NSF ERC for Human AugmentatioN via Dexterity (HAND)

James Colgate (Principal Investigator)

Lead: Northwestern University Partners: Carnegie Mellon University, Florida A&M University, and Texas A&M University, and with engagement of MIT.

HUMAN AUGMENTATION VIA DEXTERITY

- HAND will revolutionize the *ability of robots to augment human labor* by transforming dexterous robot hands into versatile, easy-to-integrate tools.
- The purpose is to create robot manipulators that are widely useful (out of the box) Today, making them inaccessible to many who might benefit, including most of the country's quartermillion *Small and Medium Enterprises (SMEs)*.
- Robots must have truly versatile end-effectors (hands), AI-powered dexterous skills, and intuitive interfaces that trained workers can use immediately.
- The breadth and structure of the ERC program will enable HAND to *ultimately democratizing* access to robot dexterity.
- Robots will find application in low-volume high-mix manufacturing, food processing, remote handling of precious or dangerous materials, assistance for individuals with motor impairments, and many other areas.

<u>NSF ERC for Transformation of American Rubber through</u> <u>Domestic Innovation for Supply Security (TARDISS)</u>

Judit Puskas (Principal Investigator) Lead: Ohio State University Partners: Caltech, North Carolina State University, Texas Tech University and the University of California, Merced.

- TARDISS will create bridges between engineering, biology, and agriculture to revolutionize and on-shore alternative natural rubber production from U.S. crops. The outcomes will be a sustainable domestic rubber industry
- TARDISS will lead fundamental research *towards US natural rubber biomanufacturing*. Currently the single commercial source *of natural rubber is the tropical rubber tree* (Hevea brasiliensis), with production areas all outside of the United States.
- The TARDISS team will *collaborate with communities, farmers, processors and rubber manufacturers* to enable biomanufacturing-based natural rubber production optimized to large parts of the US, with a focus on marginal agricultural lands.
- TARDISS will enable a *circular biomanufacturing economy* that respects natural systems, including pollinator services by the new domestic crops, water recycling and re-use, additional CO2 capture, and **an estimated 2 million** jobs tied to US soil.